
1 | ANU College of Engineering and Computer Science	 October 2020

Pipelines
Week 12 Laboratory for Systems, Networks and Concurrency

Uwe R. Zimmer

Pre-Laboratory Checklist

vv You have read this text before you come to your lab session.
vv You understand and can utilize message passing locally and distributed.
vv You have a firm understanding of memory based synchronization.
vv You understand and can apply implicit concurrency.
vv You can create and control tasks.
vv You have basic skill to distribute computations.

Objectives
This lab will confront you with a more real-world challenge than the previous labs: You need to
design a concurrent implementation without hints as to what specific techniques would lend
themselves to the job at hand.

You can also use this lab to patch all the gaps and questions which you may still have about
previous labs. This is your last lab and so you should take this opportunity to get as much out
of your tutor and lab time as possible.

Interlude:  Pipelined Mergesort

Mergesort as you know from its sequential version sorts lists by merging smaller, sorted lists
(starting from single element lists, which are by definition sorted) into larger, sorted lists until all
elements have been merged into a single, sorted list. This algorithm lends itself to concurrent
implementations in multiple ways. One way would be to set up a pipeline of merging stages,
where each stage i merges two sorted lists of length 2 i into one sorted list of length 2 i 1+ .

This description of the algorithm is purposefully kept informal as it will be your job to translate
this idea into a working solution.

Assuming that you have log n2^ h computing nodes available to sort an n element list, what
would be the time complexity for this algorithm (assuming that all computational nodes are
running in parallel)? What would be the total computational complexity (by adding up the com-
putational complexities in each node)?

Merge 21

groups 1,3,6,8

2,4,5,7

1,8

3,6

2,7

4,5
1,2,3,4,5,6,7,8Merge 20

groups
Merge 22

groups1

8

3

6

7

2

5

4
4,5,2,7,6,3,8,1

2 | ANU College of Engineering and Computer Science	 October 2020

Exercise 1:  Implement Pipelined Mergesort

In contrast to previous labs which exercised specific methods, you have now the full freedom
of choice to design an implementation of this algorithm which is smooth, elegant and efficient.

To enable you to focus fully on the concurrent aspects, I provide some sequential code frag-
ments for you, which you might need to program the overall framework and the sequential
parts of each stage.

This package beginning will provide you with flexible data-structures for a lists of generic ele-
ments (without making it an actual generic package at this point) and a random element list
which you can feed into your pipeline:

with Ada.Command_Line; use Ada.Command_Line;
with Ada.Containers.Vectors; use Ada.Containers;
with Ada.Exceptions; use Ada.Exceptions;
with Ada.Numerics.Discrete_Random; use Ada.Numerics;
with Ada.Numerics.Elementary_Functions; use Ada.Numerics.Elementary_Functions;
with Ada.Task_Identification; use Ada.Task_Identification;
with Ada.Text_IO; use Ada.Text_IO;

procedure Pipelined_Mergesort is

 No_Of_Elements : constant Positive := Positive’Value (Argument (1));

 subtype Element is Natural;

 package Random_Elements is new Discrete_Random (Result_Subtype => Element);
 use Random_Elements;

 Random_Generator : Generator;

 type Index is new Natural;

 type Element_Array is array (Index range <>) of Element;

begin
 Reset (Random_Generator);

 declare
 Data : constant Element_Array (1 .. Index (No_Of_Elements)) :=
 (others => Random (Random_Generator));

Then some testing routines which could help you to check whether your algorithm worked:

function Is_Sorted (D : Element_Array) return Boolean is
 (for all i in D’First .. D’Last - 1 => D (i) <= D (i + 1));

function Is_Permutation (Field_A, Field_B : Element_Array) return Boolean is

 package Elem_Vectors is new Vectors (Positive, Element); use Elem_Vectors;
 package Sorting is new Generic_Sorting; use Sorting;

 Vector_A, Vector_B : Vector := Empty_Vector;

begin
 for A of Field_A loop
 Append (Vector_A, A);
 end loop;
 for B of Field_B loop
 Append (Vector_B, B);
 end loop;
 Sort (Vector_A); Sort (Vector_B);
 return Vector_A = Vector_B;
end Is_Permutation;

The number of pipeline stages derives from the number of elements in your list as such:

No_Of_Stages : constant Positive :=
 Positive (Float’Ceiling (Log (Float (No_Of_Elements), 2.0)));

3 | ANU College of Engineering and Computer Science	 October 2020

Inside each stage you will need to merge existing lists. You could chose functional style:

function Merge (A, B : Element_Array) return Element_Array is

 (if A’Length = 0 then B
 elsif B’Length = 0 then A
 elsif A (A’First) < B (B’First)
 then A (A’First) & Merge (A (Index’Succ (A’First) .. A’Last), B)
 else B (B’First) & Merge (A, B (Index’Succ (B’First) .. B’Last)))

with
 Pre => Is_Sorted (A) and then Is_Sorted (B),
 Post => Is_Sorted (Merge’Result) and then Is_Permutation (Merge’Result, A & B);

Or imperative style:

function Merge_Imperative (A, B : Element_Array) return Element_Array

with Pre => Is_Sorted (A) and then Is_Sorted (B),
 Post => Is_Sorted (Merge_Imperative’Result) and then
 Is_Permutation (Merge_Imperative’Result, A & B);

function Merge_Imperative (A, B : Element_Array) return Element_Array is

begin
 if A’Length = 0 then
 return B;
 elsif B’Length = 0 then
 return A;
 else
 declare
 Merged : Element_Array (A’First .. A’Last + B’Length);

 A_Index : Index range A’Range := A’First;
 B_Index : Index range B’Range := B’First;

 begin
 for M_Index in Merged’Range loop

 declare
 Merge_Element : Element renames Merged (M_Index);
 Merge_Tail : Element_Array renames
 Merged (Index’Succ (M_Index) .. Merged’Last);

 A_Element : constant Element := A (A_Index);
 B_Element : constant Element := B (B_Index);

 begin
 if A_Element < B_Element then
 Merge_Element := A_Element;
 if A_Index = A’Last then
 Merge_Tail := B (B_Index .. B’Last); return Merged;
 else
 A_Index := Index’Succ (A_Index);
 end if;
 else
 Merge_Element := B_Element;
 if B_Index = B’Last then
 Merge_Tail := A (A_Index .. A’Last); return Merged;
 else
 B_Index := Index’Succ (B_Index);
 end if;
 end if;
 end;
 end loop;

4 | ANU College of Engineering and Computer Science	 October 2020

 raise Program_Error with “Merge for-loop should never complete”;
 end;
 end if;
end Merge_Imperative;

After you chose one of the merge implementations, take a mental note what the reasons were
for your choice. Did computational complexity, performance, maintainability, memory usage or
any other reasons play a role and what was the major reason in the end?

From this point on (while you may of course as well chose to ignore the above framework) the
stages are all yours and you need to come up with a water-tight, maintainable and elegant
implementation. You may already have a clear idea in your head at this time, but it might still
be valuable to reflect about multiple options before you starting hacking away. To give you an
idea about the solution space: a neat and clean solution does not need to be any longer than
around 30-40 (non empty) lines of code inside a single pipeline stage. So if you find yourself
beyond 100 lines of code, you may want to step back and reconsider your design. On the other
hand, your design could be specifically performant or elegant and therefore justify a larger
code section? You have to make your educated choices to achieve the goal.

To start with, you may assume that the number of elements to be sorted is a power of two1
– which will fill all your pipeline stages and you do not need to consider edge cases of partly
filled pipelines. A more robust solution will need to include the general case of arbitrary length
lists.

The number of elements to sort is taken from the command line, such that you call your func-
tion for instance with:

./pipelined_mergesort 1000

Submit a zip archive of your completed project to the SubmissionApp under “Lab 12 Pipelined
Mergesort” for code review by your peers and us.

Exercise 2:  Distributed Pipelined Mergesort

Now that your solution works on one node: does your algorithm also smoothly translate into a
distributed implementation? Use the BSD socket techniques from the previous lab to distribute
your stages over multiple computers. Can you set up a sorting machine which spans the whole
of your lab?

This is for highly advanced students only (you probably see the really dark red in the headline)
and I expect only very few students to get this far in your labs.

Submit a zip archive of your completed project to the SubmissionApp under “Lab 12 Distrib-
uted Pipelined Mergesort” for code review by your peers and us.

Make Sure You Logout
to Terminate Your Session!

Outlook
You are close to the end of an intense course and you accumulated a large set of knowledge
and skills at this point. Your final job is to set things into context and to add all the relations be-
tween the different concepts in your mind which you may have overlooked during the semester.

1	 While it is folklore in Engineering-land that all data is Gaussian-distributed and differential equations exist, it
is folklore in Computer-Science-land that all data is reproducible, uniformly-distributed and of length 2n.

http://cs.anu.edu.au/SubmissionApp
http://cs.anu.edu.au/SubmissionApp

